Операции над событиями (сумма, разность, произведение). Понятия суммы и произведения событий Достоверное и невозможное события



Правило сложения - если элемент A можно выбрать n способами, а элемент B можно выбрать m способами, то выбрать A или B можно n + m способами.

^ Правило умножения - если элемент A можно выбрать n способами, и при любом выборе A элемент B можно выбрать m способами, то пару (A, B) можно выбрать n·m способами.

Перестановка. Перестановкой множества из элементов называется расположение элементов в определенном порядке. Так, все различные перестановки множества из трех элементов - это

Число всех перестановок из элементов обозначается . Следовательно, число всех различных перестановок вычисляется по формуле

Размещение. Число размещений множества из элементов по элементов равно

^ Размещение с повторением. Если есть множество из n типов элементов, и нужно на каждом из m мест расположить элемент какого-либо типа (типы элементов могут совпадать на разных местах), то количество вариантов этого будет n m .

^ Cочетание. Определение. Сочетаниями из различных элементов по элементов называются комбинации, которые составлены из данных элементов по элементов и отличаются хотя бы одним элементом (иначе говоря, -элементные подмножества данного множества из элементов). butback="" onclick="goback(684168)">^ " ALIGN=BOTTOM WIDTH=230 HEIGHT=26 BORDER=0>


  1. Пространство элементарных событий. Случайное событие. Достоверное событие. Невозможное событие.
Пространство элементарных событий – любое множество взаимоисключающих исходов эксперимента, такое, что каждый интересующий нас результат может быть однозначно описан с помощью элементов этого множества. Бывает конечным и бесконечным(счетным и несчетным)

Случайное событие – любое подмножество пространства элементарных событий.

^ Достоверное событие – обязательно произойдет в результате эксперимента.

Невозможное событие – не произойдет в результате эксперимента.


  1. Действия над событиями: сумма, произведение и разность событий. Противоположное событие. Совместные и несовместные события. Полная группа событий.
Совместные события – если они могут произойти одновременно в результате эксперимента.

^ Несовместные события – если они не могут произойти одновременно в результате эксперимента. Говорят, что несколько несовместных событий образуют полную группу событий , если в результате эксперимента появится одно из них.

Если первое событие состоит из всех элементарных исходов, кроме тех, которые входят во второе событие, то такие события называются противоположными.

Сумма двух событий А и В – событие, состоящее из элементарных событий, принадлежащих хотя бы одному из событий А или В. ^ Произведение двух событий А и В – событие, состоящее из элементарных событий, принадлежащих одновременно А и В. Разность А и В – событие, состоящее из элементов А, не принадлежащих событию В.


  1. Классическое, статистическое и геометрическое определения вероятности. Основные свойства вероятности события.
Классическая схема: Р(А)=, n – число возможных исходов, m – число исходов, благоприятствующих событию А. татистическое определение: W(А)=, n – число произведенных экспериментов, m – число произведенных экспериментов, в которых появилось событие А. Геометрическое определение: Р(А)=, g – часть фигуры G.

^ Основные свойства вероятности: 1) 0≤Р(А)≤1, 2) Вероятность достоверного события равна 1, 3) Вероятность невозможного события равна 0.


  1. Теорема сложения вероятностей несовместных событий и следствия из нее.
Р(А+В) = Р(А)+Р(В). Следствие 1. Р(А 1 +А 2 +…+А к) = Р(А 1)+Р(А 2)+…+Р(А к), А 1 ,А 2 ,…,А к – попарно несовместны. Следствие 2 . Р(А)+Р(Ᾱ) = 1. Следствие 3 . Сумма вероятностей событий, образующих полную группу, равна 1.

  1. Условная вероятность. Независимые события. Умножение вероятностей зависимых и независимых событий.
Условная вероятность – Р(В), вычисляется в предположении, что событие А уже наступило. А и В независимые – если появление одного из них не меняет вероятность появления другого.

^ Умножение вероятностей: Для зависимых. Теорема. Р(А∙В) = Р(А)∙Р А (В). Замечание. Р(А∙В) = Р(А)∙Р А (В) = Р(В)∙Р В (А). Следствие. Р(А 1 ∙…∙А к) = Р(А 1)∙Р А1 (А 2)∙…∙Р А1-Ак-1 (А к). Для независимых. Р(А∙В) = Р(А)∙Р(В).


  1. ^ Т еорема сложения вероятностей совместных событий. Теорема . Вероятность появления хотя бы одного из двух совместных событий равна сумме вероятностей этих событий без вероятности их совместного появления
P(A+B) = P(A) + P(B) - P(A∙B)

  1. Формула полной вероятности. Формулы Байеса.
Формула полной вероятности

Н 1, Н 2 …Н n – образуют полную группу – гипотезы.

Событие А может наступить только при условии появления Н 1, Н 2 …Н n ,

Тогда Р(А)=Р(Н 1)* Р н1 (А)+Р(Н 2)*Р н2 (А)+…Р(Н n)*Р н n (А)

^ Формула Байеса

Пусть Н 1, Н 2 …Н n – гипотезы, событие А может наступить при одной из гипотез

Р(А)= Р(Н 1)* Р н1 (А)+Р(Н 2)*Р н2 (А)+…Р(Н n)*Р н n (А)

Допустим, что событие А наступило.

Как изменилась вероятность Н 1 в связи с тем, что А наступило? Т.е. Р А (Н 1)

Р(А* Н 1)=Р(А)* Р А (Н 1)= Р(Н 1)* Р н1 (А) => Р А (Н 1)= (Р(Н 1)* Р н1 (А))/ Р(А)

Аналогично определяются Н 2 , Н 3 …Н n

Общий вид:

Р А (Н i)= (Р(Н i)* Р н i (А))/ Р(А) , где i=1,2,3…n.

Формулы позволяют переоценить вероятности гипотез в результате того, как становится известным результат испытаний, в итоге которого появилось событие А.

«До» испытания – априорные вероятности - Р(Н 1), Р(Н 2)…Р(Н n)

«После» испытания – апостериорные вероятности - Р А (Н 1), Р А (Н 2)… Р А (Н n)

Апостериорные вероятности, также как и априорные, в сумме дают 1.
9.Формулы Бернулли и Пуассона.

Формула Бернулли

Пусть проводятся n испытаний, в каждом из которых событие А может появиться или нет. Если вероятность события А в каждом из этих испытаний постоянна, то эти испытания независимы относительно А.

Рассмотрим n независимых испытаний, в каждом из которых А может наступить с вероятностью p. Такая последовательность испытаний называется схемой Бернулли.

Теорема: вероятность того, что при n испытаниях событие А произойдет ровно m раз, равна: P n (m)=C n m *p m *q n - m

Число m 0 – наступление события А называется наивероятнейшим, если соответствующая ему вероятность P n (m 0) не меньше других P n (m)

P n (m 0)≥ P n (m), m 0 ≠ m

Для нахождения m 0 используют:

np-q≤ m 0 ≤np+q

^ Формула Пуассона

Рассмотрим испытание Бернулли:

n- число испытаний, p – вероятность успеха

Пусть p мало (p→0), а n велико (n→∞)

среднее число появлений успеха в n испытаниях

λ=n*p → p= λдставим в формулу Бернулли:

P n (m)=C n m *p m *(1-q) n-m ; C n m = n!/((m!*(n-m)!) →

→ P n (m)≈ (λ m /m!)*e - λ (Пуассона)

Если p≤0,1 и λ=n*p≤10, то формула дает хорошие результаты.
10. Локальная и интегральная теоремы Муавра-Лапласа.

Пусть n- число испытаний, p – вероятность успеха, n велико и стремится к бесконечности. (n->∞)

^ Локальная теорема

Р n (m)≈(f(x)/(npg)^ 1/2 , где f(x)= (e - x ^2/2)/(2Pi)^ 1/2

Если npq≥ 20 – дает хорошие результаты, х=(m-np)/(npg)^ 1/2

^ Теорема интегральная

P n (a≤m≤b)≈ȹ(x 2)-ȹ(x 1),

где ȹ(x)=1/(2Pi)^ 1/2 * 0 ʃ x e (Pi ^2)/2 dt – функция Лапласа

х 1 =(a-np)/(npq)^ 1/2 , х 2 =(b-np)/(npq)^ 1/2

Свойства функции Лапласа


  1. ȹ(x) – нечетная функция: ȹ(-x)=- ȹ(x)

  2. ȹ(x) – монотонно возрастает

  3. значения ȹ(x) (-0.5;0.5), причем lim x →∞ ȹ(x)=0,5; lim x →-∞ ȹ(x)=-0,5
Следствия

  1. P n (│m-np│≤Ɛ) ≈ 2 ȹ (Ɛ/(npq) 1/2)

  2. P n (ɑ≤m/n≤ƥ) ≈ ȹ(z 2)- ȹ(z 1), где z 1=(ɑ-p)/(pq/n)^ 1/2 z 2=(ƥ -p)/(pq/n)^ 1/2

  3. P n (│(m/n) - p│≈ ∆) ≈ 2 ȹ(∆n 1/2 /(pq)^ 1/2)
m/n относительная частота появления успеха в испытаниях

11. Случайная величина. Виды случайных величин. Способы задания случайной величины.

СВ – функция, заданная на множестве элементарных событий.

X,Y,Z – СВ, а ее значение x,y,z

Случайной называют величину, которая в результате испытаний примет одно и только одно возможное значение, наперед не известное и зависящее от случайных причин, которые заранее не могут быть учтены.

СВ дискретна , если множество ее значений конечно или сочтено (их можно пронумеровать). Она принимает отдельные, изолированные возможные значения с определенными вероятностями. Число возможных значений дискретной СВ может быть конечным или бесконечным.

СВ непрерывна , если она принимает все возможные значения из некоторого промежутка (на всей оси). Ее значения могут очень мало отличаться.

^ Закон распределения дискретной СВ м.б. задан:

1.таблицей


Х

х 1

х 2



х n

Р(Х)

р 1

р 2



p n

(ряд распределения)

Х=х 1 } несовместны

р 1 + р 2 +… p n =1= ∑p i

2.графический

Многоугольник распределения вероятности

3.аналитический

Р=Р(Х)
12. Функция распределения случайной величины. Основные свойства функции распределения.

Функция распределения СВ Х – функция F(Х), определяющая вероятность того, что СВ Х примет значение меньшее х., т.е.

x x = интегральная функция распределения

У непрерывной СВ функция непрерывная, кусочно дифференцируемая.

Достоверное и невозможное события

Достоверным называют событие, которое обязательно произойдет, если будет осуществлена определенная совокупность условий.

Невозможным называют событие, которое заведомо не произойдет, если будет осуществлена определенная совокупность условий.

Событие, совпадающее с пустым множеством, называется невозможным событием, а событие, совпадающее со всем множеством, называется достоверным событием.

События называют равновозможными , если нет основания полагать, что одно событие является более возможным, чем другие.

Теория вероятностей есть наука, изучающая закономерности случайных событий. Одной из главных задач в теории вероятностей является задача определения количественной меры возможности появления события.

АЛГЕБРА СОБЫТИЙ

Операции над событиями (сумма, разность, произведение)

С каждым испытанием связан ряд интересующих нас событий, которые, вообще говоря, могут появляться одновременно. Например, при бросании игральной кости (т.е. кубика, на гранях которого имеются очки 1, 2, 3, 4, 5, 6) событие есть выпадение двойки, а событие - выпадение четного числа очков. Очевидно, что эти события не исключают друг друга.

Пусть все возможные результаты испытания осуществляются в ряде единственно возможных частных случаев, взаимно исключающих друг друга. Тогда:

  • · каждый исход испытания представляется одним и только одним элементарным событием;
  • · всякое событие, связанное с этим испытанием, есть множество конечного или бесконечного числа элементарных событий;
  • · событие происходит тогда и только тогда, когда реализуется одно из элементарных событий, входящих в это множество.

Другими словами, задано произвольное, но фиксированное пространство элементарных событий, которое можно представить в виде некоторой области на плоскости. При этом элементарные события - это точки плоскости, лежащие внутри. Поскольку событие отождествляется с множеством, то над событиями можно совершать все операции, выполнимые над множествами. То есть, по аналогии с теорией множеств, строится алгебра событий . В частности, определены следующие операции и отношения между событиями:

(отношение включения множеств: множество является подмножеством множества) - событие A влечет за собой событие В. Иначе говоря, событие В происходит всякий раз, как происходит событие A.

(отношение эквивалентности множеств) - событие тождественно или эквивалентно событию. Это возможно в том и только в том случае, когда и одновременно, т.е. каждое из них происходит всякий раз, когда происходит другое.

() - сумма событий. Это событие, состоящее в том, что произошло хотя бы одно из двух событий или (не исключающее логическое «или»). В общем случае, под суммой нескольких событий понимается событие, состоящее в появлении хотя бы одного из этих событий.

() - произведение событий. Это событие, состоящее в совместном осуществлении событий и (логическое «и»). В общем случае, под произведением нескольких событий понимается событие, состоящее в одновременном осуществлении всех этих событий. Таким образом, события и несовместны, если произведение их есть событие невозможное, т.е. .

(множество элементов, принадлежащих, но не принадлежащих) - разность событий. Это событие, состоящее из исходов, входящих в, но не входящих в. Оно заключается в том, что происходит событие, но при этом не происходит событие.

Противоположным (дополнительным) для события (обозначается) называется событие, состоящее из всех исходов, которые не входят в.

Два события называются противоположными, если появление одного из них равносильно непоявлению другого. Событие, противоположное событию, происходит тогда и только тогда, когда событие не происходит. Другими словами, наступление события означает просто то, что событие не наступило.

Симметрическая разность двух событий и (обозначается) называется событие, состоящее из исходов, входящих в или, но не входящих в и в одновременно.

Смысл события состоит в том, что наступает одно и только одно из событий или.

Обозначается симметрическая разность: или.

Цель: ознакомить учащихся с правилами сложения и умножения вероятностей, понятием противоположных событий на кругах Эйлера.

Теория вероятностей есть математическая наука, изучающая закономерности в случайных явлениях.

Случайное явление – это такое явление, которое при неоднократном воспроизведении одного и того же опыта протекает каждый раз несколько по иному.

Приведём примеры случайных событий: бросаются игральные кости, бросается монета, проводится стрельба по мишени и т.д.

Все приведённые примеры можно рассматривать под одним и тем же углом зрения: случайные вариации, неодинаковые результаты ряда опытов, основные условия которых остаются неизменными.

Совершенно очевидно, что в природе нет ни одного физического явления, в котором не присутствовали бы в той или иной степени элементы случайности. Как бы точно и подробно ни были фиксированы условия опыта, невозможно достигнуть того, чтобы при повторении опыта результаты полностью и в точности совпадали.

Случайные отклонения неизбежно сопутствуют любому закономерному явлению. Тем не менее, в ряде практических задач этими случайными элементами можно пренебречь, рассматривая вместо реального явления, его упрощённую схему «модель» и предполагая, что в данных условиях опыта явление протекает вполне определённым образом.

Однако существует ряд задач, где интересующий нас исход опыта зависит от столь большого числа факторов, что практически невозможно зарегистрировать и учесть все эти факторы.

Случайные события можно различным способом сочетать друг с другом. При этом образуются новые случайные события.

Для наглядного изображения событий используют диаграммы Эйлера . На каждой такой диаграмме прямоугольником изображают множество всех элементарных событий (рис.1). Все другие события изображают внутри прямоугольника в виде некоторой его части, ограниченной замкнутой линией. Обычно такие события изображают окружности или овалы внутри прямоугольника.

Рассмотрим наиболее важные свойства событий с помощью диаграмм Эйлера.

Объединением событий A и B называют событие C, состоящее из элементарных событий принадлежащих событию А или В (иногда объединения называют суммой).

Результат объединения можно изобразить графически диаграммой Эйлера (рис. 2).

Пересечением событий А и В называют событие С, которое благоприятствует и событию А, и событию В (иногда пересечения называют произведением).

Результат пересечения можно изобразить графически диаграммой Эйлера (рис. 3).

Если события А и В не имеют общих благоприятствующих элементарных событий, то они не могут наступить одновременно в ходе одного и то же опыта. Такие события называют несовместными , а их пересечение – пустое событие .

Разностью событий А и В называют событие С, состоящее из элементарных событий А, которые не являются элементарными событиями В.

Результат разности можно изобразить графически диаграммой Эйлера (рис.4)

Пусть прямоугольник изображает все элементарные события. Событие А изобразим в виде круга внутри прямоугольника. Оставшаяся часть прямоугольника изображает противоположное событию A, событие (рис.5)

Событием, противоположным событию А называют событие, которому благоприятствуют все элементарные события, не благоприятствующие событию А.

Событие, противоположное событию А, принято обозначать .

Примеры противоположных событий.

Объединением нескольких событий называется событие, состоящее в появлении хотя бы одного из этих событий.

Например, если опыт состоит в пяти выстрелах по мишени и даны события:

А0- ни одного попадания;
А1- ровно одно попадание;
А2- ровно 2 попадания;
А3- ровно 3 попадания;
А4- ровно 4 попадания;
А5- ровно 5 попаданий.

Найти события: не более двух попаданий и не менее трёх попаданий.

Решение: А=А0+А1+А2 – не более двух попаданий;

В=А3+А4+А5 – не менее трёх попаданий.

Пересечением нескольких событий называется событие, состоящее в совместном появлении всех этих событий.

Например, если по мишени производится три выстрела, и рассматриваются события:

В1 - промах при первом выстреле,
В2 - промах при втором выстреле,
ВЗ - промах при третьем выстреле,

то событие состоит в том, что в мишень не будет ни одного попадания.

При определении вероятностей часто приходится представлять сложные события в виде комбинаций более простых событий, при­меняя и объединение, и пересечение событий.

Например, пусть по мишени производится три выстрела, и рассматриваются следующие элементарные события:

Попадание при первом выстреле,
- промах при первом выстреле,
- попадание при втором выстреле,
- промах при втором выстреле,
- попадание при третьем выстреле,
- промах при третьем выстреле.

Рассмотрим более сложное событие В, состоящее в том, что в результате данных трёх выстрелов будет ровно одно попада­ние в мишень. Событие В можно представить в виде следующей комбинации элементарных событий:

Событие С, состоящее в том, что в мишень будет не менее двух попаданий, может быть представлено в виде:

На рис.6.1 и 6.2 показано объединение и пересечение трёх событий.


рис.6

Для определения вероятностей событий применяются не непосредственные прямые методы, а косвенные. Позволяющие по известным вероятностям одних событий определять вероятности других событий, с ними связанных. Применяя эти косвенные методы, мы всегда в той или иной форме пользуемся основными правилами теории вероятностей. Этих правил два: правило сложения вероятностей и правило умножения вероятностей.

Правило сложения вероятностей формулируется следующим образом.

Вероятность объединения двух несовместных событий равна сумме вероятностей этих событий:

Р(А+В) =Р(А)+ Р(В).

Сумма вероятностей противоположных событий равна единице:

Р(А) + Р()= 1.

На практике весьма часто оказывается легче вычислить вероятность противоположного события А, чем вероятность прямого события А. В этих случаях вычисляют Р (А) и находят

Р (А) = 1-Р().

Рассмотрим несколько примеров на применение правила сложения.

Пример 1. В лотерее 1000 билетов; из них на один билет падает выигрыш 500 руб., на 10 билетов - выигрыши по 100 руб., на 50 билетов­ - выигрыши по 20 руб., на 100 - билетов - выигрыши по 5 руб., остальные билеты невыигрышные. Некто покупает один билет. Найти вероятность выиграть не менее 20 руб.

Решение. Рассмотрим события:

А - выиграть не менее 20 руб.,

А1 - выиграть 20 руб.,
А2 - выиграть 100 руб.,
А3 - выиграть 500 руб.

Очевидно, А= А1 +А2+А3.

По правилу сложения вероятностей:

Р (А) = Р (А1) + Р (А2) + Р (А3) = 0,050 + 0,010 + 0,001 = 0,061.

Пример 2. Производится бомбометание по трём складам боеприпасов, причём сбрасывается одна бомба. Вероятность попадания в первый склад 0,01; во второй 0,008; в третий 0,025. При попадании в один из складов взры­ваются все три. Найти вероятность того, что склады будут взорваны.

Будем полагать, что результатом реального опыта (эксперимента) может быть один или несколько взаимоисключающих исходов; эти исходы неразложимы и взаимно исключают друг друга. В этом случае говорят, что эксперимент заканчивается одним и только одним элементарным исходом .

Множество всех элементарных событий, имеющих место в результате случайного эксперимента, будем называть пространством элементарных событий W (элементарное событие соответствует элементарному исходу).

Случайными событиями (событиями), будем называть подмножества пространства элементарных событий W .

Пример 1. Подбросим монету один раз. Монета может упасть цифрой вверх - элементарное событие w ц (или w 1), или гербом - элементарное событие w Г (или w 2). Соответствующее пространство элементарных событий W состоит из двух элементарных событий:

W = {w ц,w Г } или W = {w 1 ,w 2 }.

Пример 2. Бросаем один раз игральную кость. В этом опыте пространство элементарных событий W = {w 1 , w 2 , w 3 , w 4 , w 5 , w 6 }, где w i - выпадение i очков. Событие A - выпадение четного числа очков, A = {w 2 ,w 4 ,w 6 }, A W .

Пример 3. На отрезке наугад (случайно) поставлена точка. Измеряется расстояние точки от левого конца отрезка. В этом опыте пространство элементарных событий W = - множество действительных чисел на единичном отрезке.

В более точных, формальных терминах элементарные события и пространство элементарных событий описывают следующим образом.

Пространством элементарных событий называют произвольное множество W , W ={w }. Элементы w этого множества W называют элементарными событиями.

Понятия элементарное событие, событие, пространство элементарных событий , являются первоначальными понятиями теории вероятностей. Невозможно привести более конкретное описание пространства элементарных событий. Для описания каждой реальной модели выбирается соответствующее пространство W .

Событие W называется достоверным событием.

Достоверное событие не может не произойти в результате эксперимента, оно происходит всегда .

Пример 4. Бросаем один раз игральную кость. Достоверное событие состоит в том, что выпало число очков, не меньше единицы и не больше шести, т.е. W = {w 1 , w 2 , w 3 , w 4 , w 5 , w 6 }, где w i - выпадение i очков, - достоверное событие.

Невозможным событием называется пустое множество .

Невозможное событие не может произойти в результате эксперимента, оно не происходит никогда .

Случайное событие может произойти или не произойти в результате эксперимента, оно происходит иногда .

Пример 5. Бросаем один раз игральную кость. Выпадение более шести очков - невозможное событие .

Противоположным событию A называется событие, состоящее в том, что событие A не произошло. Обозначается , .

Пример 6. Бросаем один раз игральную кость. Событие A тогда событие - выпадение нечетного числа очков. Здесь W = {w 1 , w 2 , w 3 ,w 4 , w 5 ,w 6 }, где w i - выпадение i очков, A = {w 2 ,w 4 ,w 6 }, = .

Несовместными событиями называются события

A и B , для которых A B = .

Пример 7. Бросаем один раз игральную кость. Событие A - выпадение четного числа очков, событие B - выпадение числа очков, меньшего двух. Событие A B состоит в выпадении четного числа очков, меньшего двух. Это невозможно, A = {w 2 ,w 4 ,w 6 }, B = {w 1 }, A B = , т.е. события A и B - несовместны.

Суммой событий A и B называется событие, состоящее из всех элементарных событий, принадлежащих одному из событий A или B. Обозначается A + B.

Пример 8. Бросаем один раз игральную кость. В этом опыте пространство элементарных событий W = {w 1 , w 2 , w 3 , w 4 , w 5 , w 6 }, где элементарное событие w i - выпадение i очков. Событие A - выпадение четного числа очков, A B B = {w 5 , w 6 }.

Событие A + B = {w 2 ,w 4 , w 5 , w 6 } состоит в том, что выпало либо четное число очков, либо число очков большее четырех, т.е. произошло либо событие A , либо событие B. Очевидно, что A + B W .

Произведением событий A и B называется событие, состоящее из всех элементарных событий, принадлежащих одновременно событиям A и B. Обозначается AB .

Пример 9. Бросаем один раз игральную кость. В этом опыте пространство элементарных событий W = { w 1 , w 2 , w 3 ,w 4 , w 5 ,w 6 }, где элементарное событие w i - выпадение i очков. Событие A - выпадение четного числа очков, A = {w 2 ,w 4 ,w 6 }, событие B - выпадение числа очков, большего четырех, B = {w 5 , w 6 }.

Событие A B состоит в том, что выпало четное число очков, большее четырех, т.е. произошли оба события, и событие A и событие B, A B = {w 6 } A B W .

Разностью событий A и B называется событие, состоящее из всех элементарных событий принадлежащих A , но не принадлежащих B. Обозначается A\B .

Пример 10. Бросаем один раз игральную кость. Событие A - выпадение четного числа очков, A = {w 2 ,w 4 ,w 6 }, событие B - выпадение числа очков, большего четырех, B = {w 5 , w 6 }. Событие A\ B = {w 2 ,w 4 } состоит в том, что выпало четное число очков, не превышающее четырех, т.е. произошло событие A и не произошло событие B, A\B W .

Очевидно, что

A + A = A, AA = A, .

Нетрудно доказать равенства:

, (A+B )C= AC + BC .

Определения суммы и произведения событий переносятся на бесконечные последовательности событий:

, событие, состоящее из элементарных событий, каждое из которых принадлежит хотя бы одному из;

, событие, состоящее из элементарных событий, каждое из которых принадлежит одновременно всем .

Пусть W - произвольное пространство элементарных событий, а - такая совокупность случайных событий, для которой справедливо: W , AB, A+B и A\B, если A и B.

Числовая функция P, определенная на совокупности событий , называется вероятностью, если: (A ) 0 для любого A из ; (W ) = 1;

  • если A и B несовместны, то P (A+B ) = P (A ) + P (B );
  • для любой убывающей последовательности событий {A i }из ,, такой, что , имеет место равенство .
  • Тройку называют вероятностным пространством .





    

    2024 © mgp3.ru.